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A method is proposed for estimating the lower bound of the eigenfrequencies of free plane oscillations of an 

ideal fluid in a channel of constant cross-section. The method is based on the identity [l] which is used to 

prove the theorem of uniqueness in the problem of radiation and scattering of the waves by a body 

completely immersed in the fluid. Unlike in the estimates obtained earlier [2, 3],$ here the bottom of the 

channel is not explicitly specified. It is shown that in a number of cases the estimate can be substantially 

improved when it is used together with the principle of monotony 14, 51. The method developed here can 

also be used for a three-dimensional problem. Examples are solved and the results compared with the 

known exact and approximate values [S, 61 and with the estimates obtained by others f7].$ A lower bound 

of a different type was obtained in [g]. A bibliography of the problems of eigenfrequencies of the 

oscillations of an ideal fluid can be found in [5.9]. 

1. FORMULATION OF THE PROBLEM 

LET A channel of cross-section W be filled with an ideal incompressible fluid equilibrium. The simple-connected 
region WCR-’ = {(x,y): y<O} has a piecewise-smooth boundary without the cusps, and dW = FUB, 
Ffl B = $3. Here F = {x E (-a, +a); y = 0} is the free surface of the fluid (a > 0), B is the bottom of the 
channel. The bottom represents a curve which lies within R_’ with the exception of its ends (+a, 0) which are 
the angle points of aW. 

We use the mixed Steklov problem [4-6,9] to describe the plane free oscillations of the fluid in the channel, 
harmonic in time: 

V2u=0 in W, U,=VU on F, &&e-=0 on BM-2 (1.1) 

This is a spectral problem, in which we require to find the eigenvalues of the parameter v and the 
corresponding real eigenfunctions belonging to the Sobolev space H’ (W) and satisfying the condition 
lFld& = 0. Let n be the inner normal to ;jW, the quantity ug (g is the acceleration due to gravity) be equal to the 
square of the frequency of free oscillations and u be the velocity potential of the oscillations apart from a 
multiplier harmonic in time. 

We know [4, 51 that problem (1.1) has a discrete spectrum O< vl < u2 d ~~6. . . S v,, < . . . 

2. AUXILIARY IDENTITY 

The identity [I] 

tPrik1. Mat. Mekh. Vol. 56, No. 2, pp. 342-346, 1992. 

$ See also: Fedorov A. L., Geometrical estimates of capacity-type functionafs and eigenvafues for regions of complex form. 

Candidate dissertation, Kiev, 1973. 
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can be verified directly. Here V = (V,,V,) is the vector fieid on %,-whose components are real and satisfy 
uniformly the Lipshitz condition on W, H is a real function on W with first-order derivatives satisfying 
uniformly the Lipshitz condition. The matrix Q has the elements Q;, = (V WV - 2H)$ - (3Vi/8xi + ~V~/~Xi), 6, 
is the Kronecker delta and x1 = X, x2 = y. 

Let 14 be the eigenfunction of problem (1.1) corresponding to the smallest eigenvalue Y’ . Let us integrate the 
identity (2.1) over the region W, and use the Laplace equation and Gauss’ theorem. As a result we obtain 

5 [ (Q&f .V~+tz~VW]dt dy= 

w 

(2.2) 
[2(V.Vu+Hu)~ul~n-V.nfV~J~-~~~Hldn]d~ 

Let us consider the last integral on the subset FC 61 W. If we take into account the boundary condition on Fin 
(1. l), then the integral will be equal to 

J [ V2u?- (v,*V2+2v,H-H,) u2]dz-2v* J V,u,u dx 

P F 

Integrating the last integral by parts, substituting the result into Eq. (2.2) and taking into account the 
boundary condition on R in (l.l), we arrive at the following identity: 

s [ (QVu) .Vu+u2V2H]dz dy+ 

W 

+ (V.n)V’aJ*+u*dH/~n)ds+ J 
(3.3) 

3. DERIVATION OF THE ESTIMATE 

Let us put N = --I/Z in (2.3) and require that the field V satisfy the condition 

Vi=--2, Vt=O on F 

Then the identity (2.3) will take the form 

(3.1) 

J (QVu) *Vu dz dy+ J 1 Vu12V .ndr=v,n c 11% (la, 0) 
W 6 * 

Further, let the matrix Q be non-negative in the region Wand 

inf (V+i: (1, y)fB)=m>O (3.2) 

Here from the last relation it follows that 

6 * 

Here the boundary condition on B in (1. I) was also taken into account. It was shown in f IOj that the function 
I( has a single nodal line whose ends lie on the free surface F and on the bottom B. The latter end divides the 
bottom into two parts B, and B_, and the point (*ct. 0) serves as the second end of the curve B,. According to 
the ~e~vt~~n-L~ibnitz formula we have 

ju(‘a,oj/= f J (du/ds)ds 1 

II* 
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From this we obtain, using the Cauchy inequality, 

u2 (fu, 0) < 1 !I, 1 5 (Wh) * ds (3.4) 

and therefore 

c 
u*(*n.O)<]B] (ilu/dr)‘dr I 

Here 1 B / is the length of the curve B Fwe have similarly ;BI 1). 
Combining the last inequality with (3.3), we arrive at the following result. 

Theorern. Let the vector field V be such that the matrix Q is non-negative in the region W when H = - 9’~. 
and conditions (3.1) and (3.2) hold. Then the following inequality holds: 

m]B]-‘<via (3.5) 

Corollary. For the regions symmetric about the ordinate the estimate (3.5) can be replaced by 

2mlBj-‘Gv,a (3.6) 

Proof By virtue of the symmetry, the end of the nodal line of the function u lying at the bottom divides B in 

half, i.e. (B+ / = ) B- 1 = ) B l/2 in (3.4). Then from (3.3) and (3.4) we obtain (3.6). 

Notes. (1) The corollary shows that in some cases the lower bound of the first eigenvalue vl in the 

non-symmetric region W will be obtained more easily, if, instead of using inequality (3.9, we carry out the 
following scheme. We construct an auxiliary symmetric region W’ so that W’ C Wand the free surfaces of these 
two regions coincide. Further, using the inequality (3.6) we obtain the lower bound of the first eigenvalue vi’ in 

the region W’. Since vi’<ui by virtue of the principle of monotony (see e.g. [4,5]), it follows that the resulting 
estimate will also hold for the eigenvalue vi. It may even be found better than the estimate obtained using the 
inequality (3.5) directly (see e.g. [4, chapter 41). 

(2) The method of obtaining the lower bound for the eigenvalues given here can also be used in the 

three-dimensional case. The corresponding vector fields can be obtained by rotating the plane fields about the 
ordinate (see [l]). 

4. EXAMPLES 

Let us write 

Then, when H = --Vi. the matrix 

V=(-r. --ky). OGkG.2 (4.1) 

will be non-negative. Condition (3.1) will also hold. Let us consider several specific regions satisfying the 
inequality (3.2) with the field (4.1), for any kE [0,2]. The estimates obtained for these regions from formulas 
(3.5) and (3.6) are now compared with the known exact results and the esimates obtained by others. We shall 
make the comparisons using the dimensionless quantity v1 a. 

Example 1. For a rectangular region W of width 2u and depth d, we put k = 2 in formula (4.1). Then 

min (V.n: (I, y)“-R}=min (a, 2d) 

and from inequality (3.6) we find that 

v!u&min {u, Zd)/(a+d) 

Using the method of separation of variables we find that for a rectangle 

(4.2) 
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Type of channel 
cross-section 

TABLE 1 

Exact value 
Estimate obtained Estimate obtained 

in this paper in [7] 

Rectangle d/a = ?h 0.58 2h 

Rectangle d/a = ‘/2 1.04 % 0.09 
Rectangle d/a = 1 1.44 ‘/z - 

Rectangle dla = 2 1.57 ‘A 0.14 
Semicircle 1.36 [51 2A.r 0.08 
Right-angle isosceles triangle cy = 7r/4 1 161 % 0.59 
Isosceles triangle Q = ~16 3/4 0.33 

.T Xd 
v,a = -- th - 

2 20 
(4.3) 

Thus. estimate (4.2) works quite well for small values of d. For large d formula (4.2) gives an estimate for v,a 
which is much too low. Table 1 gives numerical results for some specific values on the ratio d/a enabling a 
comparison to be made of the estimate (4.2) with the exact value given by (4.3) and the estimate given in 171. 

Example 2. For the region W which is a semicircle of radius a, we put k = 1 in (4. I). Then V VII = a on R and 
from the inequality (3.6) we find that ula 22/a (compare with the exact value given in Table 1). 

Example 3. Let the region W be an isosceles triangle with hase of length 2a, and let it serve as the free 
surface. We denote the angle at the base by CL If k = 1 in (4.1), then we find that V+n = asinu on B. Then the 
inequality (3.6) will take the form 

v,a*‘/: sin 2a (4.4) 

(compare with the exact value for CY = n/4 in Table 1). 
The following estimate was obtained for the isosceles triangles by Fedorov (see the earlier footnote) 

;z (1+4tg*a)‘h-l 
,*,p 9 - ._-_-e 

2 (1+4tgra)%+i 

which is worse than (4.4) for small values of 01, and better for values of cy approaching the value of 7ri2 (see 
Table 1). 

Example 4. Let the region B be a right isosceles triangle whose leg represents the free surface. If k = 1 in 
(4.1), then V.n = a on the vertical part of the bottom, and V.n = a/\/Z on the sloping part of the bottom. 
Then equality (3.5) will take the form 

v,cr> (4+2f??)-’ (4.5) 

Let us consider the right isosceles triangle W’ for which the same free surface acts as the base. According to 
inequality (4.4) and note (l), we have ul a 2 V,‘a 3 Y2. The last, estimate is significantly better than (4.5). 

Example 5. Using the same arguments we can obtain, by elementary methods, quite good estimates for 
sufficiently complex regions. Let us consider the region W shown in Fig. 1. and inscribe in it an isosceles 

FIG. I. 
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triangle with base angle equal to ~r/6, for which we shall use inequality (4.4). According to the principle of 
monotony the estimate V, a B a holds for the region W. The computed value of vI a for the region shown in 
the figure is equal to 0.86. 

Comparing the first two columns in Table 1 we see that the quantities obtained for the lower bound of v, a 
vary within the limits of 21-69% of the exact value. The mean value in the second column is equal to 43% of the 
value in the first column. 
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